Cramér moderate deviations for a supercritical Galton–Watson process

نویسندگان

چکیده

Let (Zn)n≥0 be a supercritical Galton–Watson process. The Lotka–Nagaev estimator Zn+1/Zn is common for the offspring mean. In this paper, we establish some Cramér moderate deviation results via martingale method. Applications to construction of confidence intervals are also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Process Level Moderate Deviations for Stabilizing Functionals

Functionals of spatial point process often satisfy a weak spatial dependence condition known as stabilization. In this paper we prove process level moderate deviation principles (MDP) for such functionals, which is a level-3 result for empirical point fields as well as a level2 result for empirical point measures. The level-3 rate function coincides with the so-called specific information. We s...

متن کامل

Moderate Deviations for a Diffusion Type Process in Random Environment

Let σ(u), u ∈ R be an ergodic stationary Markov chain, taking a finite number of values a1, . . . , am, and b(u) = g(σ(u)), where g is a bounded and measurable function. We consider the diffusion type process dX t = b(X ε t /ε)dt+ ε σ `

متن کامل

Moderate Deviations for Dynamic Model Governed by Stationary Process

We give an example of the moderate deviations for the family (X n t) t≥0 , n ≥ 1 with ˙ X n t = a(X n t) + b(X n t) n √ n k+1 ηtn, where ηt is a stationary process obeying the Wold – decomposition: ηt = R t −∞ h(t − s)dN s with respect to a process Nt with homogeneous independent square integrable increments and 1/2 < k < 1.

متن کامل

Moderate Deviations for Queuesin Critical

We establish logarithmicasymptotics of moderate deviations for the processes of queue length and waiting times in single server queues and open queueing networks in critical loading. Our results complement earlier heavy-traac approximation results.

متن کامل

Moderate Deviations for Bounded Subsequences

Let (Xn)n≥1 be a sequence of random variables on a probability space (Ω, ,P) and p ≥ 1 a fixed real number. We say that (Xn)n≥1 is Lp-bounded if it has finite pth moments, that is, ‖Xn‖p ≤ C for some C > 0 and any n ≥ 1. Let ε > 0; finding the rate of convergence of the moderate deviations probabilities P[|∑k=1Xk| > εan] with an = (n logn)1/2 or (n loglogn)1/2 is known in the literature as Davi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2023

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2022.109711